Sand from centuries past;Send future voices fast.
A Nobel Lecture organized by the Royal Swedish Academy of Sciences
and The Prize Committee in Physics delivered by Mrs Gwen MW Kao
on behalf of Prof Charles K Kao Nobel Laureate in Physics 2009
8 December 2009 Aula Magna Stockholm University
1. Introduction
It is sad that my husband, Professor Charles Kao, is unable to give this lecture to you himself. As the person closest to him, I stand before you to honour him and to speak for him. He is very very proud of his achievements for which the Nobel Foundation honours him. As are we all!
In the 43 years since his seminal paper of 1966 that gave birth to the ubiquitous glass fiber cables of today, the world of telephony has changed vastly. It is due to Professor Kao’s persistence in the face of skepticism that this revolution has occurred.
In the 1970s the pre-production stage moved to ITT Corp Roanoke VA, USA. Whilst Charles worked there, he received two letters. One contained a threatening message accusing him of releasing an evil genie from its bottle; the other, from a farmer in China, asked for a means to allow him to pass a message to his distant wife to bring his lunch. Both letter writers saw a future that has since become past history.
In the 1960s, our children were small. Charles often came home later than normal – dinner was waiting as were the children. I got very annoyed when this happened day after day. His words,maybe not exactly remembered, were –‘Please don’t be so mad. It is very exciting what we are doing; it will shake the world one day!’ I was sarcastic, ‘Really, so you will get the Nobel Prize, won’t you!
He was right – it has revolutionized telecommunications.
2. The early days
In 1960, Charles joined Standard Telecommunications Laboratories Ltd. (STL), a subsidiary of ITT Corp in the UK, after having worked as a graduate engineer at Standard Telephones and Cables in Woolwich for some time. Much of the work at STL was devoted to improving the capabilities of the existing communication infrastructure with a focus on the use of millimeter wave transmission systems.
Millimeter waves at 35 to 70 GHz could have a much higher transmission capacity. But the waters were uncharted and the challenges enormous, since radio waves at such frequencies could not be beamed over long distances due to beam divergence and atmospheric absorption. The waves had to be guided by a waveguide. And in the 1950’s, R&D work on low loss circular waveguides –HE-11 mode – was started. A trial system was deployed in the 1960s. Huge sums were invested, and more were planned, to move this system into the pre-production stage. Public expectation for new telecommunication services such as the video phone had heightened.
Charles joined the long-haul waveguide group led by Dr Karbowiak at STL. He was excited to see an actual circular waveguide. He was assigned to look for new transmission methods for microwave and optical transmission. He used both ray optics and wave theory to gain a better understanding of waveguide problems – then a novel idea. Later, his boss encouraged him to pursue a doctorate while working at STL. So Charles registered at University College London and completed the dissertation ‘Quasi-Optical Waveguides’ in two years.
The invention of the laser in 1959 gave the telecom community a great dose of optimism that optical communication could be just around the corner. The coherent light was to be the new information carrier with capacity a hundred thousand times higher than point-to-point microwaves –based on the simple comparison of frequencies: 300 terahertz for light versus 3 gigahertz for microwaves.
The race between circular microwave waveguides and optical communication was on, with the odds heavily in favour of the former. In 1960, optical lasers were in their infancy, demonstrated at only a few research laboratories, and performing much below the needed specs. Optical systems seemed a non-starter.
But Charles still thought the laser had potential. He said to himself: ‘How can we dismiss the laser so readily? Optical communication is too good to be left on the theoretical shelf.’
He asked himself the obvious questions:
1. Is the ruby laser a suitable source for optical communication?
2. What material has sufficiently high transparency at such wavelengths?
At that time only two groups in the world were starting to look at the transmission aspect of optical communication, while several other groups were working on solid state and semiconductor lasers. Lasers emit coherent radiation at optical frequencies, but using such radiation for communication appeared to be very difficult, if not impossible. For optical communication to fulfill its promises, many serious problems remained to be solved.
3. The key discovery
In 1963 Charles was already involved in free space propagation experiments: the rapid progress of semiconductor and laser technology had opened up a broader scope to explore optical communication realistically. With a helium-neon laser beam directed to a spot some distance away, the STL team quickly discovered that distant laser light flickered. The beam danced around several beam diameters because of atmospheric fluctuations.
The team also tried to repeat experiments done by other research laboratories around the world. For example, they set up con-focal lens experiments similar to those at Bell Labs: a series of convex lenses were lined up at intervals equal to the focal length. But even at the dead of night when the air was still and even with refocusing every 100 meters, the beam refused to stay within the lens aperture.
Bell Labs experiments using gas lenses were abandoned due to the difficulty of providing satisfactory insulation while maintaining the profiles of the gas lenses. These experiments were struggles in desperation, to control light travelling over long distances.
At STL the thinking shifted towards dielectric waveguides. Dielectric means a non-conductor of electricity; a dielectric waveguide is a waveguide consisting of a dielectric cylinder surrounded by air. Dr Karbowiak suggested Charles and three others to work on his idea of a thin film waveguide.
But thin film waveguides failed: the confinement was not strong enough and light would escape as it negotiates a bend.
When Dr Karbowiak decided to emigrate to Australia, Charles took over as the project leader and he then recommended that the team should investigate the loss mechanism of dielectric materials for optical fibers.
A small group worked on methods for measuring material loss of low-loss transparent materials. George Hockham joined him to work on the characteristics of dielectric waveguides.
With his interest in waveguide theory, he focused on the tolerance requirements for an optical fiber waveguide; in particular, the dimensional tolerance and joint losses. They proceeded to systematically study the physical and waveguide requirements on glass fibers.
In addition, Charles was also pushing his colleagues in the laser group to work towards a semiconductor laser in the near infrared, with emission characteristics matching the diameter of a single-mode fiber. Single mode fiber is optical fiber that is designed for the transmission of a single ray or mode of light as a carrier. The laser had to be made durable, and to work at room temperatures without liquid nitrogen cooling. So there were many obstacles. But in the early 1960s, esoteric research was tolerated so long as it was not too costly.
Over the next two years, the team worked towards the goals. They were all novices in the physics and chemistry of materials and in tackling new electromagnetic wave problems. But they made very credible progress in considered steps. They searched the literature, talked to experts, and collected material samples from various glass and polymer companies. They also worked on the theories, and developed measurement techniques to carry out a host of experiments. They developed an instrument to measure the spectral loss of very low-loss material, as well as one for scaled simulation experiments to measure fiber loss due to mechanical imperfections.
Charles zeroed in on glass as a possible transparent material. Glass is made from silica –sand from centuries past that is plentiful and cheap.
The optical loss of transparent material is due to three mechanisms: (a) intrinsic absorption, (b)extrinsic absorption, and (c) Rayleigh scattering. The intrinsic loss is caused by the infrared absorption of the material structure itself, which determines the wavelength of the transparency regions. The extrinsic loss is due to impurity ions left in the material and the Rayleigh loss is due to the scattering of photons by the structural non-uniformity of the material. For most practical applications such as windows, the transparency of glass was entirely adequate, and no one had studied absorption down to such levels. After talking with many people, Charles eventually formed the following conclusions.
1. Impurities, particularly transition elements such as iron, copper, and manganese, have to be reduced to parts per million or even parts per billion. However, can impurity concentrations be reduced to such low levels?
2. High temperature glasses are frozen rapidly and therefore are more homogeneous, leading to a lower scattering loss.
The ongoing microwave simulation experiments were also completed. The characteristics of the dielectric waveguide were fully defined in terms of its modes, its dimensional tolerance both for end-to-end mismatch and for its diameter fluctuation along the fiber lengths. Both the theory and the simulated experiments supported the approach.
They wrote the paper entitled, ‘Dielectric-Fibre Surface Waveguides for Optical Frequencies’ and submitted it to the Proceedings of Institute of Electrical Engineers. After the usual review and revision, it appeared in July 1966 – the date now regarded as the birthday of optical fiber communication.
4. The paper
The paper started with a brief discussion of the mode properties in a fiber of circular cross section.
The paper then quickly zeroed in on the material aspects, which were recognized to be the major stumbling block. At the time, the most transparent glass had a loss of 200 dB/km, which would limit transmission to about a few meters – this is very obvious to anyone who has ever peered through a thick piece of glass. Nothing can be seen.
But the paper pointed out that the intrinsic loss due to scattering could be as low as 1 dB/km,which would have allowed propagation over practical distances. The culprit is the impurities:
mainly ferrous and ferric ions at these wavelengths. Quoting from the paper: ‘It is foreseeable that glasses with a bulk loss of about 20 dB/km at around 0.6 micron will be obtained, as the iron-impurity concentration may be reduced to 1 part per million’. In layman terms, if one has a sufficiently ‘clean’ type of glass, one should be able to see through a slab as thick as several hundred meters. That key insight opened up the field of optical communications.
The paper considered many other issues:
The loss can be reduced if the mode is chosen so that most of the energy is actually outside the fiber.
The fiber should be surrounded by a cladding of lower index (which became the standard technology).
The loss of energy due to bends in the fiber is negligible for bends larger than 1 mm.
The losses due to non-uniform cross sections were estimated.
The properties of a single-mode fiber (now a key technology especially for long distance and high data rate transmission) were analyzed. It was explained how dispersion limits bandwidth; an example was worked out for a 10 km route – a very bold scenario in 1966.
It may be appropriate to quote from the Conclusion of this paper:
The realization of a successful fiber waveguide depends, at present, on the availability of suitable low-loss dielectric material. The crucial material problem appears to be one which is difficult but not impossible to solve. Certainly, the required loss figure of around 20 dB/km is much higher than the lower limit of loss figure imposed by fundamental mechanisms.
Basically all of the predictions pointed accurately to the paths of developments, and we now have 1/100 of the loss and 10,000 times the bandwidth then forecast – the evolutionary proposal in the 1966 paper was in hindsight too conservative.
5. Convincing the world
The substance of the paper was presented by Dr Kao at an IEE meeting in February 1966. Most of the world did not take notice – except for the British Post Office (BPO) and the UK Ministry of Defense, who immediately launched major research programs. By the end of 1966, three groups in the UK were studying the various issues involved: Kao himself at STL; Roberts at BPO; Gambling at Southampton in collaboration with Williams at the Ministry of Defense Laboratory.
In the next few years, Dr Kao traveled the globe to push his idea: to Japan, where enduring friendships were made dating from those early days; to research labs in Germany, in the Netherlands and elsewhere to spread his news. He said that until more and more jumped on the bandwagon, the use of glass fibers would not take off. He had tremendous conviction in the face of widespread skepticism. The global telephony industry is huge, too large to be changed by a single person or even a single country, but he was persistent and his enthusiasm was contagious, and slowly he converted others to be believers.
The experts at first proclaimed that the materials were the most severe of the intrinsic insurmountable problems. Gambling wrote that British Telecom had been ‘somewhat scathing’about the proposal earlier, and Bell Labs, who could easily have led the field, simply failed to take notice until the proven technology was pointed out to them. Dr Kao visited many glass manufacturers to persuade them to produce the clear glass required. He got a response from Corning, where Maurer led the first group that later produced the glass rods and developed the techniques to make the glass fibers to the required specifications.
Meanwhile, Dr Kao continued to pour energy into proving the feasibility of glass fibers as the medium for long-haul optical transmission. They faced a number of formidable challenges. The first was the measurement techniques for low-loss samples that were obtainable only in lengths of around 20 cm. The problem of assuring surface perfection was also ormidable. Another problem is end surface reflection loss, caused by the polishing process. They faced a measurement impasse that demanded the detection of a loss difference between two samples of less than 0.1%, when the total loss of the entire 20 cm sample is only 0.1%. An inexact measurement would be meaningless.
In 1968 and 1969, Dr Kao and his colleagues Davies, Jones and Wright at STL published a series of papers on the attenuation measurements of glass that addressed the above problems. At that time, the measuring instruments called spectrophotometers had a rather limited sensitivity – in the range of 43 dB/km. The measurement was very difficult: even a minute contamination could have caused a loss comparable to the attenuation itself, while surface effects could easily be ten times worse. Dr Kao and the team assembled a homemade single-beam spectrophotometer that achieved a sensitivity of 21.7 dB/km. Later improvements with a double-beam spectrophotometer yielded a sensitivity down to 4.3 dB/km.
The reflection effect was measured with a homemade ellipsometer. To make it, they used fused quartz samples made by plasma deposition, in which the high temperature evaporated the impurity ions. With the sensitive instrument, the attenuation of a number of glass samples was measured and, eureka, the Infrasil sample from Schott Glass showed an attenuation as low as 5 dB/km at a window around 0.85 micron – at last proving that the removal of impurity would lower the absorption loss to useful levels.
This was really exciting because the low-loss region is right at the gallium-arsenide laser emission band. The measurements clearly pointed the way to optical communication –compact gallium-arsenide semiconductor lasers as the source, low-cost cladded glass fibers as the transmission medium, and silicon or germanium semiconductors for detection. The dream no longer seemed remote. These measurements apparently turned the sentiments of the research community around. The race to develop the first low-loss glass fiber waveguide was on.
In 1967, at Corning, Maurer’s chemist colleague Schultz helped to purify the glass.
In 1968, his colleagues Keck and Zimar helped to draw the fibers. By 1970, Corning had produced a fiber waveguide with a loss of 17 dB/km at 0.633 micron using a titanium-diffused core with silica cladding, using the Outside Vapor Deposition (OVD) method. Two years later, they reduced the loss to 4 dB/km for a multimode fiber by replacing the titanium-doped core with a germanium-doped core.
Bell Labs finally got on the bandwagon in 1969 and created a programme in optical fiber research after having been skeptical for years. Their work on hollow light pipes was finally stopped in 1972. Their millimeter wave research programme was wound down and eventually abandoned in 1975.
It was during this time of constant flying out to other places that this cartoon joke hit home:‘Children, the man you see at the breakfast table today is your father!’
We saw him for a few days and off he went again. Sometimes he flew off for the day for meetings at ITT Corp headquarters in New York. I would forget he had not left to go to the office and would phone his secretary to remind Charles to pick up milk or something on his way home.
His secretary was very amused:‘Mrs Kao, don’t you know your husband is in New York today!’
6. Impact on the world
Since the deployment of the first-generation, 45-megabit-per-second fiber-optic communication system in 1976, the transmission capacity in a single fiber has rapidly increased a million fold to tens of terabits per second. Data can be carried over millions of km of fibers without going through repeaters, thanks to the invention of the optical fiber amplifier and wavelength division multiplexing. So that is how the industry grew and grew. The world has been totally transformed because of optical fiber communication. The telephone system has been overhauled and international long distance calls have become easily affordable.
Brand new mega-industries in fiber optics including cable manufacturing and equipment, optical devices, network system and equipment have been created.
Hundreds of millions of kilometers of glass fiber cables have been laid, in the ground and in the ocean, creating an intricate web of connectivity that is the foundation of the world-wide web.
The Internet is now more pervasive than the telephone used to be. We browse, we skype, we blog, we go onto you-tube, we shop, we socialize on-line. The information revolution that started in the 1990s could not have happened without optical fibers.
Over the last few years fibers are being laid all the way to our homes. All-optical networks that are environmentally green are contemplated. The revolution in optical fiber communication has not ended – it might still just be at the beginning.
7. Conclusion
Conclusion The world-wide communication network based on optical fibers has truly shrunk the world and brought human beings closer together. I hardly need to cite technical figures to drive this point home. The news of the Nobel Prize reached us in the middle of the night at 3 am in California, through a telephone call from Stockholm (then in their morning) no doubt carried on optical fibers; congratulations came literally minutes later from friends in Asia (for whom it was evening), again through messages carried on optical fibers. Too much information is not always a good thing: we had to take the phone off the hook that night in order to get some sleep!
Optical communication is by now not just a technical advance, but has also caused major changes in society. The next generation will learn and grow up differently; people will relate to one another in different ways. Manufacturing of all the bits and pieces of a single product can now take place over a dozen locations around the world, providing huge opportunities for people especially in developing countries. The wide accessibility of information has obviously led to more equality and wider participation in public affairs.
Many words, indeed many books have been written about the information society, and I do not wish to add to them here – except to say that it is beyond the dreams of the first serious concept of optical communication in 1966, when even 1 GHz was only a hope.
In conclusion, Charles and I want to thank the Professors at The Chinese University of Hong Kong, namely: Professor Young, Professor Wong, Professor Cheung and Professor Chen for their support in compiling this lecture for us. Charles would like to thank ITT Corp where he developed his career for 30 years and all those who climbed on to the bandwagon with him in the early days, as without the legions of believers the industry would not have evolved as it did.
Charles Kao planted the seed; Bob Maurer watered it and John MacChesney grew its roots.
Nobel wife tells of Kao persistence
Mary Ann Benitez (The Standard)
Wednesday, December 09, 2009
If it were not for the persistence of Charles Kao Kuen the telecommunications revolution may not have occurred.
Kao, co-winner of the 2009 Nobel Prize in Physics, pioneered the use of fiber optics in telephony nearly 50 years ago despite the doubts of others.
This was revealed yesterday by his wife, Gwen Kao Wong May-wan, in a Nobel Week lecture in Sweden.
Kao, 76, a former vice chancellor of the Chinese University of Hong Kong, will receive his award tomorrow at the Stockholm Concert Hall.
Charles Kao, who suffers from Alzheimer's disease, is also in the city with children Simon and Amanda.
In her lecture, Sand From Centuries Past; Send Future Voices Fast, Gwen said it was sad that her husband was unable to give the lecture himself. She said fiber-optic cables have changed the world despite many, in 1960, thinking they were "a non-starter." But Charles was convinced they had potential even though there were many hurdles to overcome.
Gwen recalled how she and the children would wait for him to come home and get annoyed at the long hours he was putting in. Charles, excited at what he was doing, would say: "It will shake the world one day." To this, his wife would reply: "Really, so you will get the Nobel Prize, won't you?"
Gwen said yesterday: "He was right - it has revolutionized telecommunications."
Charles joined Standard Telecommunications Laboratories, a subsidiary of ITT, at Harlow, near London, in 1960. He was first under the optical waveguide group led by Antoni Karbowiak. When Karbowiak decided to emigrate to Australia, Kao took over as project leader.
"They were all novices in the physics and chemistry of materials and in tackling new electromagnetic wave problems," Gwen said. Her husband zeroed in on glass as a possible material for transmitting data, because it is made of silica - "sand from centuries past that is plentiful and cheap." Finally his team wrote the paper that was to change the world, which was published in the Proceedings of the Institute of Electrical Engineers in July 1966.
Optical communications have since brought about incredible changes in society, including the birth of the internet.
http://www.thestandard.com.hk/news_detail.asp?pp_cat=30&art_id=91660&sid=26356850&con_type=1
Charles Kuen Kao receives Nobel Prize2009-12-11 13:18 BJT
The 2009 Nobel Prize presentation ceremony has been held in the Swedish capital of Stockholm. The joint winner in Physics, Professor Charles Kuen Kao has received the prize.
Professor Kao received the Nobel Prize certificate, gold medal, and prize from Swedish King Carl Gustaf. Kao has been awarded the prize for his groundbreaking achievements in fiber optics. He shares the prize with two American scientists.
His work on fiber optics has revolutionized global communications.
But while the world benefits, the 76-year-old himself can now hardly communicate with the outside world due to Alzheimer's disease.
On Tuesday, Nobel laureates were due to give speeches to the Swedish Royal Academy. Due to his ill health, Professor Kao sat in the audience as his wife took the stage on his behalf.
Charles K. Kao, left, receives the Nobel Prize in Physics from
Swedish King Carl XVI Gustaf, right, at the Concert Hall in
Stockholm, Sweden, Thursday Dec. 10. 2009. Kao shares the prize
with two other laureates 'for groundbreaking achievements
concerning the transmission of light in fibers for optical
communication' (AP Photo/Jonas Ekstromer / SCANPIX /Pool)
Kao was born in Shanghai in 1933. His family moved to Hong Kong in 1948 where he completed his secondary education. Kao studied and obtained his Bachelor of Science degree in Britain. He received his PhD in electrical engineering in 1965 from University College London, while working at Standard Telecommunication Laboratories in Harlow, England. It is there that Kao started his groundbreaking work.
But despite his achievements over the decades, the prize is a late reward for his work. His invention itself did not bring him much wealth as the patent belongs to his employers.
Editor: Liu Anqi Source: CCTV.com
http://english.cctv.com/program/newshour/20091211/102890.shtml
高錕謝辭 傳人助撰太太代言2009-12-08
今午斯德哥爾摩諾獎演說 談光纖談家庭
【明報專訊】身在瑞典的今屆諾貝爾物理學獎得主高錕,今日將由太太黃美芸代表,站在斯德歌爾摩大學講台上,發表舉世注目的得獎演說。據悉,今次演辭將主要論述高錕的光纖理論如何革新世界通訊,只有小量篇幅描述個人和家庭生活。高錕夫婦更委託中文大學3名物理和工程學者任幕後軍師協助撰寫編輯,再由高太最後操刀,潤飾文筆和添上感性謝辭。
歷年諾貝爾獎得獎者皆在領獎前夕,在瑞典發表得獎演講,綜述生平最重要的研究成就和學術思想。由於患阿茲海默症(老人癡呆症一種)的高錕發言有困難,今次演說將由太太黃美芸代為發表。
甫悉獲獎即邀中大助寫演辭
據悉,高錕夫婦於10月獲通知得獎後,即聯絡中大尋求協助,其中與高錕相識多年的中大副校長兼物理學家楊綱凱,和另外兩名在1990年代由高錕邀請到中大的工程學「傳人」,現任中大訊息工程學系教授張國偉和陳亮光,即義不容辭組成專家小組,協助完成這篇學術性甚濃的演說。
據本報了解,高太親自點題Sand from centuries past; Send future voices fast的演辭以英文寫成,至昨日已大致完成,但仍在審定最後用詞和中譯本的修辭,其中標題的中文翻譯更令眾人頭痛,盼能以最貼切的文字描述。在英國長大的高太花了不少心思以押韻且具詩意的英語文句起題,標題或為文言。
演辭開首高太先自我介紹,並對丈夫未能親自演講表示歉意,然後娓娓道出1960年代高錕研發光纖的時代背景及理論簡介,談及當年物理學界已有光通訊的理論,不過無法製造出可長距離傳輸光信息的物料。
當時高錕認定傳送物料才是關鍵,便埋首研究製作光纖的方法,終在1966年發表光通訊理論,指人類可製作出極高純度的玻璃纖維,取代傳統銅線傳送極高容量資料。演辭並會講述1970年代科學界如何利用高錕的理論,並由康寧玻璃工廠以石英製造出世界第一條光纖,自此「光纖」技術一日千里,帶來世界通訊革命。
據悉,歷時2小時的演講會,主要回顧光纖理論的基礎和對世界的影響,內容主要節錄自高錕的自傳及論文,只有小部分篇幅提及高錕的個人生活,但高太亦會抒發感情一面,如訴說高錕日常醉心科研,減少了家庭團聚的時間等。高太又會感謝中大多名教授協助蒐集資料和提供理論背景,協助完成演辭。
明報記者 賴偉家 蔡惠華
(明報)2010年3月10日 星期三 05:10
【明報專訊】高錕教授,2009年諾貝爾物理獎得主,其光纖研究的突破為人類生活帶來翻天覆地的改變,透過光纖以高速傳輸信息的革命性進步,使知識的傳送在瞬間即可達到世界每個角落,大大加快了人類社會的生活步伐,深刻地改變了人類的生活方式,故有「光纖之父」的尊稱。
本書以白描敘述的手法,由作者以第一身親自娓娓道來自己的故事,從一個「擁有做不正常的事的自由」的小孩,憑藉對化學、實驗的濃厚興趣,到發展成為人生事業和理想,繼而堅持不懈地默默耕耘,順應時代發展的大趨勢,一步步走在科研探討之路上平穩地前進,不斷地攀越一座又一座的高峰,終於成就了一位世界聞名、對全人類帶來重要貢獻的偉大科學家。這一路走來,高錕教授沒有經歷大起大落,有的是平淡中的執著,對清晰目標及遠大抱負的始終如一。正如書名所言:「潮平岸闊」,簡練而精妙地概括了高教授平穩而不平凡的一生。
才德兼備 學者楷模
學者的責任除了學術研究,更重要的是把研究成果應用於有助社會向前發展的範疇,此為之知性;而身為知識分子,掌握人類各知識範疇最先進的領域,學者的品行應成為大眾的楷模,此為之德性。若兩者能兼備,則可算得上是大學者,而高錕教授無疑可稱為其中的佼佼者。
永遠保留一顆赤子之心,對理想堅持執著,遇到疑難只當是成功之前的挑戰,這樣便能勇往直前而最終走向顛峰,成就非凡。高教授在幾十年的事業生涯當中,歷任不同崗位,其中包括美國國際電話電報公司(ITT)科學行政總裁(ITT現為全球最大高科技工程及製造公司)、香港中文大學校長等高職,生活環境亦經常隨工作崗位而轉變,但貫徹不變的是他對光纖理論及應用研究的堅執意志,憑著他對學術研究理念的秉持,最終得以留名青史。
人才是需要經過長期的悉心栽培方能成就大器,機會包括提供成長的空間和培訓的資源,並讓其可以在安寧穩定的環境中學習。如果沒有ITT不斷地提供機會予高教授,也許光纖要再多等若干年才可能出現,不僅埋沒了一位傑出科學家,人類生活更可能還停留在預約時間通過電報或電話溝通的年代,不會那麼快進入一個新的電子世代。 當然,沒有高錕教授也會由其他人完成,每個人在人類進步史中都有機會參與,全看他能否把握及艱辛不懼地經歷磨練。
科學及科技的發展,為人類的生活帶來極大的方便與改善,促進了社會的高速發展,全賴科學家孜孜不倦的探索精神,今日我們的生活才得以便利快捷,飛機、電腦、網絡、手提電話等等,壓縮了人類的時間與空間,拉近七大洲的距離而形成了地球村,讓我們可以上天下地、縱橫經緯,自由無礙地於地球與太空間漫遊、冒險、探索。
年輕人宜效高錕堅持理想
然而,誠如高教授所言:「人的生活質素,也應以全人類的福祉為依歸」,當知識以光速傳播,知識鋪天蓋地,硬件裝備顯然超越了人們吸收信息的速度,更重要的是如何有效地應用高科技為人們的福祉服務,加快人類社會的進步。這就要求我們以廣闊的胸懷、從高遠的角度綜覽,重新審視對人文精神的培養、對人性尊嚴的重視、人與人之間的關係與信任、個人對自己、家庭、社會以至世界的關顧及參與。
香港的年輕人多關注影視藝術界,可能以為所付個人努力不必太多,更多的是偶然機遇。我想還是多讓年輕人走艱辛自選的路,可能是老生常談,不合時宜,但仍希望年輕人嘗試讀一下這些書,選擇不畏艱辛、堅持理想之路。
書名:《潮平岸闊──高錕自述》
作者:高錕(許迪鏘譯)
出版社:三聯書店(香港)有限公司
出版年:2009年(2005年7月第一版)
作者簡介
香港政策研究所創辦人及主席、中國國際問題研究基金會名譽理事長,同時兼任多項社會公職。
文:葉國華
http://hk.news.yahoo.com/article/100309/4/gxot.html
No comments:
Post a Comment